Joyeux Noël de tous à Galleon Systems

Ici à Galleon Systems, L'un des principaux fournisseurs européens de Serveur NTP Nous souhaitons à tous nos clients, fournisseurs et même à nos concurrents un Joyeux Noël et une Bonne Année. Nous espérons que 2009 est une année réussie pour vous tous.

Synchronisation de l'horloge atomique à l'aide de MSF

Un temps précis utilisant Atomic Clocks est disponible en Grande-Bretagne et dans certaines parties du nord de l'Europe en utilisant le Signal de temps d'horloge atomique MSF Transmis de Cumbria, Royaume-Uni; Il permet de synchroniser le temps sur les ordinateurs et autres équipements électriques.

Le signal MSF du Royaume-Uni est exploité par NPL - le National Physical Laboratory. MSF dispose d'une puissance d'émission élevée (50,000 watts), d'une antenne très efficace et d'une fréquence extrêmement basse (60,000 Hz). À titre de comparaison, une station de radio AM typique diffuse à une fréquence de 1,000,000 Hz. La combinaison de puissance élevée et de basse fréquence donne beaucoup de rebond aux ondes radio de MSF, et cette station unique peut donc couvrir la majeure partie de la Grande-Bretagne et de l'Europe continentale.

Les codes temporels sont envoyés par MSF en utilisant l'un des systèmes les plus simples possibles, et à un débit de données très bas d'un bit par seconde. Le signal 60,000 Hz est toujours transmis, mais chaque seconde est considérablement réduite en puissance pour une période de secondes 0.2, 0.5 ou 0.8: • 0.2 secondes de puissance réduite signifie un zéro binaire • Les secondes 0.5 de puissance réduite sont binaires. • 0.8 secondes de puissance réduite est un séparateur. Le code temporel est envoyé en BCD (code codé binaire) et indique les minutes, les heures, le jour de l'année et l'année, ainsi que des informations sur l'heure d'été et les années bissextiles.

Le temps est transmis en utilisant des bits 53 et des séparateurs 7, et prend donc 60 secondes à transmettre. Une horloge peut contenir une antenne et un récepteur extrêmement petits et relativement simples pour décoder les informations dans le signal et régler le temps de l'horloge avec précision. Tout ce que vous devez faire est de définir le fuseau horaire, et l'horloge atomique affichera l'heure correcte.

Dévoué serveurs de temps Qui sont syntonisés pour recevoir le signal temporel MSF sont disponibles. Ces appareils connectent un réseau informatique comme tout autre serveur, seuls ceux-ci reçoivent le signal de synchronisation et le distribuent à d'autres machines sur le réseau en utilisant NTP (Network Time Protocol).

Correction du temps réseau

Les réseaux distribués dépendent complètement de l'heure correcte. Les ordinateurs ont besoin d'horodatages pour commander des événements et lorsqu'une collection de machines travaille ensemble, il est impératif qu'ils fonctionnent en même temps.

Malheureusement, les PC modernes ne sont pas conçus pour être des chronométreurs parfaits. Leurs horloges système sont des oscillateurs électroniques simples et sont susceptibles de dériver. Ce n'est généralement pas un problème lorsque les machines fonctionnent de manière autonome mais lorsqu'elles communiquent sur un réseau, toutes sortes de problèmes peuvent survenir.

Des courriels arrivant avant d'avoir été envoyés à des pannes entières du système, le manque de synchronisation Peut causer des problèmes incalculables sur un réseau et c'est pour cette raison que les serveurs de temps réseau sont utilisés pour assurer l'ensemble du réseau synchronisé ensemble.

Serveurs de temps réseau Venez sous deux formes: le Serveur de temps GPS Et le serveur de temps référencé par radio. GPS NTP Les serveurs utilisent le signal temporel diffusé à partir de satellites GPS. Ceci est extrêmement précis car il est généré par une horloge atomique à bord du satellite GPS. Radio référencée Serveur NTPS utiliser une transmission à ondes longues transmises par plusieurs laboratoires nationaux de physique.

Ces deux méthodes sont une bonne source de Temps universel coordonné (UTC) le calendrier mondial global. UTC est utilisé par les réseaux à travers le monde et la synchronisation permet aux réseaux informatiques de communiquer avec confiance et de prendre des transactions sensibles au temps sans erreur.

Certains administrateurs utilisent Internet pour recevoir une source de temps UTC. Bien qu'un serveur de temps de réseau dédié ne soit pas nécessaire pour le faire, il présente des inconvénients de sécurité dans la mesure où un port doit être laissé ouvert dans le pare-feu pour que l'ordinateur communique avec le Serveur NTP, Cela peut laisser un système vulnérable et ouvert aux attaques. En outre, les sources de temps sur Internet sont notoirement peu fiables, dont beaucoup sont trop inexacts ou trop loin pour servir n'importe quel but utile.

Pourquoi le besoin de NTP

Network Time Protocol Est un protocole Internet utilisé pour synchroniser les horloges d'ordinateur à une référence temporelle stable et précise. NTP a d'abord été développé par le professeur David L. Mills à l'Université du Delaware dans 1985 et est un protocole standard Internet.

NTP A été développé pour résoudre le problème des ordinateurs multiples fonctionnant ensemble et ayant le temps différent. Alors que le temps ne fait que progresser, si les programmes fonctionnent sur des ordinateurs différents, l'heure devrait avancer même si vous passez d'un ordinateur à l'autre. Cependant, si un système est en avance sur l'autre, le basculement entre ces systèmes entraînerait un certain temps pour aller en avant et en arrière.

En conséquence, les réseaux peuvent exécuter leur propre temps, mais dès que vous vous connectez à Internet, les effets deviennent visibles. Juste les messages électroniques arrivent avant leur envoi et sont même répondu avant leur envoi!

Bien que ce type de problème puisse sembler inoffensif lorsqu'il s'agit de recevoir des courriels, cependant, dans certains environnements, un manque de synchronisation peut avoir des résultats désastreux, c'est pourquoi le contrôle du trafic aérien était l'une des premières applications pour NTP.

NTP Utilise une seule source de temps et la distribue parmi tous les périphériques d'un réseau, elle fait cela en utilisant un algorithme qui permet d'ajuster une horloge système pour assurer la synchronisation.

NTP fonctionne sur une base hiérarchique pour s'assurer qu'il n'y a pas de problème de trafic réseau et de bande passante. Il utilise une seule source de temps, normalement UTC (temps universel coordonné) et reçoit des demandes de temps des machines en haut de la hiérarchie qui passent le temps sur la chaîne.

La plupart des réseaux qui utilisent NTP utiliseront un système dédié serveur de temps réseau Pour recevoir leur signal d'heure UTC. Ceux-ci peuvent recevoir le temps de la Réseau GPS Ou les transmissions radio diffusées par les laboratoires nationaux de physique. Ces dédiés NTP serveurs de temps Sont idéales car ils reçoivent le temps direct à partir d'une source d'horloge atomique, ils sont également sécurisés car ils sont situés à l'extérieur et ne nécessitent donc pas d'interruptions dans le pare-feu réseau.

Nouvelle antenne à champignons GPS imperméable à l'eau

La nouvelle antenne GPS à champignon de Galleon Systems offre une fiabilité accrue dans la réception Signaux de synchronisation GPS pour NTP serveurs de temps.
Le nouveau récepteur de synchronisation et de synchronisation GPS Exactime 300 GPS possède des propriétés anti-UV, anti-acidité et anti-alcalinité imperméables à l'eau pour assurer une communication fiable et continue avec le Réseau GPS.

Le champignon blanc attrayant est plus petit que les antennes GPS conventionnelles et se trouve juste en hauteur 77.5mm ou 3.05-inch et est facilement installé et installé grâce à l'inclusion d'un guide d'installation complet et d'un manuel CD.

Alors qu'une unité idéale pour un Serveur de temps NTP GPS Cette antenne standard de l'industrie est également idéale pour tous les besoins de réception GPS, y compris: navigation maritime, contrôle du suivi des véhicules et NTP synchronisation
Les principales caractéristiques de l'antenne champignon Exactime 300 sont les suivantes:

• Antenne murale intégrée • Canaux de suivi parallèle 12 • Fast TTFF (Time to first fix) et faible consommation d'énergie • Batterie rechargeable embarquée et soutenue Horloge et contrôle en temps réel • mémoire de paramètres pour une acquisition rapide des satellites lors de la mise sous tension • Filtre d'interférence aux canaux VHF majeurs du radar marin • WAAS conforme au support EGNOS • Drift Static parfait pour la vitesse et le cours • Compensation de déclenchement magnétique • Est protégé contre la tension de polarité inverse • Prise en charge de l'interface RS-232 ou RS-422, Support 1 PPS sortie.

Utilisation de l'UTC

Pour recevoir et distribuer et authentifier la source de temps UTC, il existe actuellement deux types de NTP Serveur, le GPS NTP serveur et le Serveur NTP référencé par radio. Bien que ces deux systèmes distribuent l'UTC de manière identique, la manière dont ils reçoivent les informations de synchronisation diffère.

A Serveur de temps NTP GPS Est une source de temps et de fréquence idéale car il peut fournir un temps très précis partout dans le monde en utilisant des composants relativement bon marché. Chaque satellite GPS transmet dans deux fréquences L2 pour l'usage militaire et L1 pour utilisation par des civils transmis à 1575 MHz, des antennes et des récepteurs GPS peu coûteux sont maintenant largement disponibles.

Le signal radio émis par le satellite peut passer à travers les fenêtres, mais peut être bloqué par des bâtiments donc l'endroit idéal pour une antenne GPS est sur un toit avec une bonne vue du ciel. Plus satellites, il peut recevoir du meilleur signal. Toutefois, les antennes montés sur le toit peuvent être sujettes à des coups de foudre ou autres surtensions si un suppresseur est fortement recommandé d'être installé en ligne sur le câble GPS.

Le câble entre l'antenne GPS et le récepteur est également critique. La distance maximale qu'un câble peut exécuter n'est normalement que des compteurs 20-30, mais un câble coaxial de haute qualité combiné avec un amplificateur GPS placé en ligne pour augmenter le gain de l'antenne peut permettre un dépassement des câbles du câble 100. Cela peut entraîner des difficultés dans l'installation dans des bâtiments plus importants si le serveur est trop éloigné de l'antenne.

Une autre solution consiste à utiliser une radio référencée Serveur de temps NTP. Ceux-ci s'appuient sur un certain nombre de transmissions par radio de temps et de fréquence nationales que l'heure UTC de diffusion. En Grande-Bretagne, le signal (appelé MSF) est diffusé par le National Laboratoire de Physique Dans Cumbria qui sert de référence nationale au Royaume-Uni, il existe également des systèmes similaires aux États-Unis (WWVB) et en France, en Allemagne et au Japon.

Une radio basée Serveur NTP Se compose généralement d'un serveur de temps monté en rack et d'une antenne, constituée d'une barre de ferrite à l'intérieur d'une enceinte en plastique, qui reçoit l'émission de fréquence et de fréquence radio. Il devrait toujours être monté horizontalement à angle droit vers la transmission pour une puissance optimale du signal. Les données sont envoyées en impulsions, 60 par seconde. Ces signaux fournissent un temps UTC à une précision des microsecondes 100, mais le signal radio a une portée finie et est vulnérable aux interférences.

2008 sera un deuxième plus long Leap Second à ajouter à UTC

Les célébrations du Nouvel An devront attendre encore une seconde cette année, car le Service International de Rotation de Terre et de Systèmes de Référence (IERS) a décidé de 2008 est d'avoir ajouté Leap Second.

IERS a annoncé à Paris en juillet qu'il fallait ajouter à la 2008 une publication intitulée Leap Second, la première depuis Dec. 31, 2005. Leap Seconds a été introduit pour compenser l'imprévisibilité de la rotation de la Terre et pour conserver l'UTC (temps universel coordonné) avec GMT (Greenwich Meantime).

La nouvelle seconde supplémentaire sera ajoutée le dernier jour de cette année aux heures 23, 59 minutes et secondes 59 Temps universel coordonné - 6: 59: 59 pm heure normale de l'Est. 33 Leap Seconds a été ajouté depuis 1972

Serveur NTP Les systèmes qui commandent la synchronisation du temps sur les réseaux informatiques sont tous régis par UTC (Temps universel coordonné). Lorsqu'une seconde supplémentaire est ajoutée à la fin de l'année, l'UTC sera automatiquement modifié comme seconde supplémentaire. #

Que ce soit Serveur NTP Reçoit un signal de temps pour des transmissions telles que MSF, WWVB ou DCF ou du réseau GPS, le signal entraînera automatiquement l'annonce Leap Second.

Avis de Leap Second du International Earth Rotation and Reference Systems Service (IERS)

SERVICE INTERNATIONAL DE LA ROTATION TERRESTRE ET DES SYSTÈMES DE RÉFÉRENCE

SERVICE DE LA ROTATION TERRESTRE
OBSERVATOIRE DE PARIS
61, Av. De l'Observatoire 75014 PARIS (France)
Tél. : 33 (0) 1 40 51 22 26
FAX: 33 (0) 1 40 51 22 91
E-mail: services.iers@obspm.fr
https://hpiers.obspm.fr/eop-pc

Paris, 4 Juillet 2008

Bulletin C 36

Aux autorités responsables de la mesure et de la distribution du temps

UTC TIME STEP
Sur 1TE de Janvier 2009

Un saut positif sera présenté à la fin de décembre 2008.
La séquence des dates des deuxième marqueurs UTC sera:

2008 Décembre 31, 23h 59m 59s
2008 Décembre 31, 23h 59m 60s
2009 Janvier 1, 0h 0m 0

La différence entre UTC et le TAI international Atomic Time est:

De 2006 Janvier 1, 0h UTC, à 2009 Janvier 1 0h UTC: UTC-TAI = - 33
De 2009 Janvier 1, 0h UTC, jusqu'à nouvel ordre: UTC-TAI = - 34

Les dernières secondes peuvent être introduites en UTC à la fin des mois de décembre

Horloges atomiques L'avenir du temps

Les méthodes de suivi du temps ont changé tout au long de l'histoire avec une précision toujours croissante, étant le catalyseur du changement.

La plupart des méthodes de chronométrage sont traditionnellement basées sur le mouvement de la Terre autour du Soleil. Pendant des millénaires, un jour a été divisé en 24 parties égales qui sont devenues des heures. La base de nos délais sur la rotation de la Terre a été adaptée à la plupart de nos besoins historiques, mais à mesure que la technologie avance, la nécessité d'un calendrier toujours plus précis a été évidente.

Le problème avec les méthodes traditionnelles est apparu lorsque les premières montres vraiment précises - l'horloge atomique a été développée dans les 1950. Parce que ces montres étaient basées sur la fréquence des atomes et étaient exactes dans un deuxième chaque million d'années, on a rapidement découvert que notre journée, que nous avions toujours présumé être exactement 24 heures, modifié du jour au jour.

Les effets de la gravité de la Lune sur nos océans font que la Terre ralentisse et accélère pendant sa rotation - certains jours sont plus longs que 24 heures alors que d'autres sont plus courts. Bien que ces différences aiguës dans la durée d'une journée aient peu marqué notre vie quotidienne, cette inexactitude a des implications pour bon nombre de nos technologies modernes telles que la communication par satellite et le positionnement mondial.

Un calendrier a été développé pour faire face aux inexactitudes dans le spin de la Terre - Temps universel coordonné (UTC). Il est basé sur la rotation traditionnelle de la Terre 24-heure connue sous le nom de Greenwich Meantime (GMT), mais explique les inexactitudes dans le spin de la Terre en ayant appelé 'Leap Seconds' ajouté (ou soustrait).

Comme UTC est basé sur le temps indiqué par horloges atomiques C'est incroyablement précis et a donc été adopté comme calendrier civil du monde et est utilisé par les entreprises et le commerce dans le monde entier.

La plupart des réseaux informatiques peuvent être synchronisés avec UTC en utilisant un Serveur de temps NTP.

Atomic Clocks et le serveur NTP utilisant la mécanique quantique pour indiquer le temps

Dit le temps n'est pas aussi simple que la plupart des gens pensent. En fait, la question même, "quel est l'heure"? Est une question que même la science moderne peut ne pas répondre. Le temps, selon Einstein, est relatif; Il passe des changements pour différents observateurs, affectés par des facteurs tels que la vitesse et la gravité.

Même lorsque nous vivons tous sur la même planète et que nous passons le temps de façon similaire, nous pouvons dire que le temps peut être de plus en plus difficile. Notre méthode originale d'utilisation de la rotation de la Terre a depuis été découverte pour être inexacte car la gravité de la Lune provoque des jours plus longs que 24 et quelques-uns pour être plus courts. En fait, lorsque les dinosaures précoceurs parcouraient la Terre par jour, il n'y avait que 22 heures de retard!

Alors que les horloges mécaniques et électroniques nous ont fourni une certaine précision, nos technologies modernes ont nécessité des mesures de temps beaucoup plus précises. Le GPS, le commerce d'Internet et le contrôle de la circulation aérienne ne sont que trois industries qui ont été divisées. Le deuxième temps est incroyablement important.

Alors, comment faire le suivi du temps? L'utilisation de la rotation de la Terre s'est révélée peu fiable, tandis que les oscillateurs électriques (horloges à quartz) et les horloges mécaniques ne sont exacts qu'à une seconde ou deux par jour. Malheureusement, pour beaucoup de nos technologies, une seconde imprécision peut être trop longue. Dans la navigation par satellite, la lumière peut parcourir 300,000 km en un peu plus d'une seconde, rendant l'unité de navigation saturée moyenne inutile s'il y avait une seconde d'inexactitude.

La solution à la recherche d'une méthode précise de mesure du temps a été d'examiner la très petite mécanique quantique. La mécanique quantique est l'étude de l'atome et ses propriétés et leur interaction. On a découvert que les électrons, les minuscules particules qui orbitent des atomes ont changé le chemin qu'ils orbitèrent et ont libéré une quantité précise d'énergie lorsqu'ils le font.

Dans le cas de l'atome de césium, cela se produit près de neuf milliards de fois par seconde et ce nombre ne change jamais et peut donc être utilisé comme une méthode ultra fiable de suivi du temps. Les atomes de césium utilisent des horloges atomiques et, en fait, la seconde est maintenant définie comme étant juste au-dessus de 9 milliards de cycles de rayonnement de l'atome de césium.

Les horloges atomiques
Sont la base de nombreuses technologies. Toute l'économie mondiale repose sur eux avec le temps relayé par NTP serveurs de temps Sur des réseaux informatiques ou rayonnés par des satellites GPS; En veillant à ce que le monde entier conserve le même temps, précis et stable.

Un calendrier global officiel, le temps universel coordonné (UTC) a été développé grâce aux horloges atomiques permettant au monde entier de courir le même temps à quelques milles de seconde l'un de l'autre.

Fonctionnement d'un serveur de temps GPS

A Serveur de temps GPS Est vraiment un dispositif de communication. Son but est de recevoir un signal de synchronisation et de le répartir entre tous les périphériques sur un réseau. Le serveur de temps s s'appelle souvent différentes choses de Serveur de temps de réseau, serveur de temps de GPS, serveur de temps de radio et serveur de NTP.

La plupart des serveurs temporels utilisent le protocole NTP (Network Time Protocol). NTP est l'un des protocoles les plus anciens d'Internet et est utilisé par la majorité des machines qui utilisent un serveur de temps. NTP est souvent installé, sous forme de base, dans la plupart des systèmes d'exploitation.

A Serveur de temps GPS, Comme le suggèrent les noms, reçoit un signal de synchronisation Réseau GPS. Les satellites GPS ne sont vraiment que des horloges en orbite. À bord, chaque satellite GPS est une horloge atomique. Le temps ultra précis de cette horloge est ce qui est transmis par le satellite (avec la position du satellite).

Un système de navigation par satellite fonctionne en recevant le signal de temps de trois satellites ou plus et en réglant la position des satellites et sur la durée d'arrivée des signaux, il peut trianguler une position.

Un serveur de temps GPS nécessite encore moins d'informations et un seul satellite est nécessaire pour recevoir une référence temporelle. L'antenne d'un serveur de temps GPS recevra un signal de synchronisation de l'un des satellites en orbite 33 via la ligne de visée, de sorte que le meilleur endroit pour réparer l'antenne est le toit.

Le plus dévoué Serveurs de temps GPS NTP Nécessitent de bonnes heures 48 pour localiser et obtenir une correction constante sur un satellite mais une fois qu'ils ont, il est rare de perdre la communication.

Le temps transmis par les satellites GPS est connu sous le nom de temps GPS et, bien qu'il diffère selon le calendrier global officiel UTC (temps universel coordonné) car ils sont tous deux basés sur le temps atomique (TAI), le temps GPS est facilement converti par NTP.

Un serveur de temps GPS est souvent appelé un périphérique 1 NTP stratum, un périphérique 2 stratum est une machine qui reçoit le temps du serveur de temps GPS. Les périphériques Stratum 2 et stratum 3 peuvent également être utilisés comme serveurs temporels et, de cette façon, un seul serveur de temps GPS peut fonctionner comme une source de synchronisation pour une quantité illimitée d'ordinateurs et de périphériques tant que la hiérarchie de NTP est suivi.